SUPPORT VECTOR MACHINE BERBASIS CHI SQUARE UNTUK PREDIKSI HARGA BERAS ECER KABUPATEN POHUWATO

Sunarto Taliki, Ivo Colanus Rally Drajana, Andi Bode

Abstract


One of the staple foods for most Indonesians is rice. Rice is one of the staple foods most consumed by the people of Indonesia, the need for rice is also increasing, considering the very large and scattered population of Indonesia. The ups and downs of rice prices also have an impact on farmers because of their large production. The solution to dealing with uncertain changes in the retail price of rice is to predict prices. One way to find out the estimated retail price of rice is to make predictions using the Support Vector Machine algorithm using Chi Square. The results of the experiments that have been carried out, the prediction of rice prices has been successfully carried out. The smallest error rate in the Support Vector Machine algorithm model is RMSE 733,061. Then the proposed model approaches the value of perfection, because the comparison of the experimental results of rice price predictions produces an average accuracy value of 95.82%. Thus, the proposed method is declared successful.

Full Text:

PDF

References


Bode, A. (2019). Perbandingan Metode Prediksi Support Vector Machine Dan Linear Regression Menggunakan Backward Elimination Pada Produksi Minyak Kelapa. Simtek: jurnal sistem informasi dan teknik komputer, 4(2), 104-107.

Drajana, I. C. R. (2017). Metode support vector machine dan forward selection prediksi pembayaran pembelian bahan baku kopra. ILKOM Jurnal Ilmiah, 9(2), 116-123.

Iku, M. H., Mustofa, Y. A., & Kumala, I. S. (2019). Metode K-Nearest Neighbor untuk Memprediksi Harga Eceran Beras di Pasar Tradisional Gorontalo. Jurnal Cosphi, 3(2).

Laia, M. L., & Setyawan, Y. (2020). Perbandingan Hasil Klasifikasi Curah Hujan Menggunakan Metode SVM dan NBC. Jurnal Statistika Industri dan Komputasi, 5(02), 51-61.

Lumbanraja, F. R., Ira Hariati, B. S., Kurniawan, D., & Aristoteles, A. (2020). Prediksi Jumlah Penderita Penyakit Tuberkulosis Di Kota Bandar Lampung Menggunakan Metode Svm (Support Vector Machine). Kumpulan Jurnal Ilmu Komputer (KLIK), 7(3), 320-330.

Nisa, A., Darwiyanto, E., & Asror, I. (2019). Analisis Sentimen Menggunakan Naive Bayes Classifier dengan Chi-Square Feature Selection Terhadap Penyedia Layanan Telekomunikasi. eProceedings of Engineering, 6(2).

Pratama, N. D., Sari, Y. A., & Adikara, P. P. (2018). Analisis Sentimen Pada Review Konsumen Menggunakan Metode Naive Bayes Dengan Seleksi Fitur Chi Square Untuk Rekomendasi Lokasi Makanan Tradisional. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650-658.




DOI: https://doi.org/10.54314/jssr.v5i2.899

Article Metrics

Abstract view : 22 times
PDF - 6 times

Announcement: Call for Paper 2021 Bingung Mengetahui ID Google Scholar?Berikut 3 langkah mudah mengetahui ID  dan menambahkan artikel publikasinya pada google scholar. Jurnal Online Universitas Jambi Tutorial Akses Jurnal Indonesia OneSearch | Perpustakaan