SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN SAPI PEDAGING IMPOR TERBAIK DI PT. JUANG JAYA ABADI ALAM DENGAN MENGGUNAKAN METODE MOORA

Beni Andika¹, Ahmad Fitri Boy², Zulfian Azmi³, Ishak⁴, Milfa Yetri⁵ STMIK Triguna Dharma, Medan

e-mail: ¹tugasdaringtgd@gmail.com

Abstract: The food and beverage industry, which is currently experiencing development, for example the packaged milk industry, beef snacks, packaged sausages, meat bowls and so on, relies heavily on the main raw material, namely beef. Cows are one of the most widely bred animals in Indonesia. Cows are divided into 2, namely Dairy Cattle and Beef Cattle. Dairy Cows are used to produce milk, while Beef Cattle are used from their meat. Lots of beef cattle breeders fail in their business, because they can't choose the best cows. The beef cattle business is growing rapidly at this time, causing very tight competition in meeting the supply of beef. This causes farmers to be really careful in choosing the type of beef cattle. the best import in PT. Juang Jaya Abadi Alam which aims to simplify and assist problems in selecting the best imported beef cattle and is expected to find the right decision making. From this research, it will result that the application used is desktop-based that can implement the MOORA method in selecting the best imported beef cattle.

Keywords: Decision Support System, MOORA, Imported Beef Cattle.

Abstrak: Industri makanan dan minuman yang saat ini sedang mengalami perkembangan misalnya industri susu kemasan, makanan ringan dari daging sapi, sosis kemasan, meatbowl dan lain sebagainya sangat bergantung pada bahan baku utama yaitu daging sapi. Sapi merupakan salah satu hewan yang banyak diternakkan di Indonesia. Sapi terbagi menjadi 2 yaitu Sapi Perah dan Sapi Potong. Sapi Perah dimanfaatkan untuk menghasilkan susu, sedangkan Sapi Potong dimanfaatkan dari hasil dagingnya. Banyak sekali peternak sapi potong gagal dalam bisnisya, karena tidak dapat memilih sapi terbaik. Bisnis sapi potong yang berkembang pesat saat ini, menimbulkan persaingan yang sangat ketat dalam memenuhi pasokan daging sapi Hal ini menyebabkan peternak harus benar-benar teliti dalam memilih jenis sapi pedaging.Untuk mengatasi masalah diatas dibuatlah Sistem Pendukung Keputusan dengan menggunakan Metode MOORA untuk pemilihan sapi pedaging impor terbaik di PT. Juang Jaya Abadi Alam yang bertujuan untuk mempermudah dan membantu masalah-masalah dalam pemilihan sapi pedaging impor terbaik dan diharapkan dapat menemukan Pengambilan Keputusan secara tepat. Dari penelitian ini akan menghasilkan aplikasi yang digunakan adalah berbasis desktop yang dapat mengimplementasikan Metode MOORA dalam pemilihan sapi pedaging impor terbaik.

Kata kunci: Sistem Pendukung Keputusan, MOORA, Sapi Pedaging Impor

PENDAHULUAN

Sapi merupakan salah satu hewan yang banyak diternakkan di Indonesia. Sapi terbagi menjadi 2 yaitu Sapi Perah dan Sapi Potong. Sapi Perah dimanfaatkan untuk menghasilkan susu, sedangkan Sapi Potong dimanfaatkan dari hasil dagingnya. Daging sapi merupakan salah satu produk pangan yang memiliki

gizi untuk memenuhi kebutuhan nilai protein bagi masyarakat. Daging sapi adalah produk peternakan yang memiliki nilai ekonomis. Seiring dengan pertumbuhan penduduk yang begitu besar, kebutuhan daging akan meningkat. semakin Tingginya kebutuhan daging mengharuskan para peternak untuk membudidayakan sapi dengan memasok sapi agar memenuhi konsumen.(Afrisawati kebutuhan Irianto, 2019)

Banyak sekali peternak sapi potong gagal dalam bisnisya, karena tidak dapat memilih sapi terbaik. Bisnis sapi potong yang berkembang pesat saat ini, menimbulkan persaingan yang sangat ketat dalam memenuhi pasokan daging sapi Hal ini menyebabkan peternak harus benar-benar teliti dalam memilih jenis sapi pedaging. Maka dari itu untuk memudahkan dan menentukan pemilihan sapi pedaging impor terbaik di PT. Juang Jaya Abadi Alam dibualah suatu Sistem Pendukung Keputusan yang bertujuan memudahkan dan membantu untuk masalah dalam pemilihan sapi pedaging terbaik diharapkan mengambil Keputusan yang tepat.

Konsep SPK (Sistem Pendukung Keputusan) pertama sekali diungkapkan pada awal tahun 1970-an oleh Michael S. Scott Morton dengan istilah Management Decesion System. Istilah SPK mengacu pada suatu sistem yang memanfaatkan komputer dalam dukungan pengambilan keputusan, berikut ini adalah pendapat para ahli tentang pengertian SPK, diantaranya oleh Man dan Watson yaitu SPK (Sistem Pendukung Keputusan) adalah suatu sistem yang dapat membantu keputusan mengambil melelui penggunaan data dan model keputusan untuk memecahkan masalah yang sifatnya semi terstruktur maupun yang tidak terstruktur[7]-[10] (Rizanti et al., 2019). SPK merupakan sistem informasi berbasis komputer interaksi yang dapat memberikan lternatif dan solusi bagi pengambil dan pembuat keputusan. Jadi

SPK merupakan pada umumnya pengembangan lebih lanjut dari Sistem Informasi Manajemen terkomputerisasi yang dirancang sedemikian rupa sehingga bersifat interaktif dengan pemakainya (Sriani & Putri, 2018). Secara umum sistem pendukung keputusan didefinisikan sebagai bagian dari sistem informasi berbasis komputer termasuk sistem berbasis pengetahuan manajemen pengetahuan yang dipakai untukmendukung pengambilan keputusan dalam suatu organisasi atau perusahaan (Amijava et al., 2019).

Menurut Nofriansyah, D dan Defit, S (2017: 85) "Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) adalah multiobjektif sistem mengoptimalkan dua atau lebih attribut yang saling bertentangan secara bersamaan". Metode ini diterapkan untuk memecahkan masalah dengan perhitungan kompleks. matematika yang Moora diperkenalkan oleh Brauers dan Zavadskas pada tahun 2006. Pada awalnya metode ini diperkenalkan oleh Brauers pada tahun 2004 sebagai "Multi-Objective Optimization " yang dapat digunakan untuk memecahkan berbagai masalah pengambilan keputusan yang rumit pada lingkungan pabrik. Metode Moora diterapkan untuk memecahkan banyak permasalahan ekonomi. manajerial dan kontruksi pada sebuah perusahaan maupun proyek (Erwansyah, 2019).

METODE

Berikut ini adalah algoritma penyelesaian metode Moora yaitu sebagai berikut:

- 1. Langkah Pertama :Menginput Nilai Kriteria. Menginput nilai kriteria suatu alternatif dimana nilai tersebut nantinya akan diproses dan hasilnya akan menjadi sebuah keputusan.
- Langkah Kedua : Merubah nilai kriteria menjadi matriks keputusan. matriks keputusan berfungsi sebagai

pengukuran kinerja dari alternatife I th pada atribut J th, M adalah alternatif dan n adalah jumlah atribut dan kemudian sistem rasio dikembangkan dimana setiap kinerja dari sebuah alternatif pada sebuah atribut dibandingkan dengan penyebut yang merupakan wakil untuk semua alternatif dan atribut tersebut, berikut adalah perubahan nilai kriteria menjadi sebuah matriks keputusan.

$$\mathbf{x} = \begin{bmatrix} x_{11} & x_{12} & x_{1n} \\ x_{21} & x_{22} & x_{2n} \\ x_{m1} & x_{m2} & x_{mn} \end{bmatrix}$$

3. Langkah Ketiga : Normalisasi pada metode Moora. Normalisasi bertujuan untuk menyatukan setiap element matriks sehingga element matriks seragam. memiliki nilai yang Normalisasi pada Moora dapat menggunakan dihitung sebagai berikut:

$$X_{ij}^* = Xij / \sqrt{\left[\sum_{i=1}^m X_{ij}^2\right]}$$

4. Langkah Keempat: Mengurangi nilai maximax dan minimax untuk menandakan bahwa sebuah atribut lebih penting itu bisa dikalikan dengan bobot yang sesuai (koefesien signifikan). (Brauers etal.2009 dalam Ozcelik, 2014). Saat atribut bobot dipertimbangkan perhitungan menggunakan persamaan sebagai berikut:

$$Y_{i} = \sum_{j=1}^{g} w_{j} x_{ij}^{*} - \sum_{j=g+1}^{n} w_{j} w_{ij}^{*}$$

 Langkah Kelima: Menentukan rangking dari hasil perhitungan MOOR

Menentukan Kriteria

Berikut ini adalah data nilai kriteria pada pemilihan sapi pedaging impor terbaik di PT. Juang Jaya Abadi Alam.

Tabel 1. Menentukan Kriteria dan Bobot

	Ko	Krite	Bob	W	Keteran
	de	ria	ot	j	gan
1	C1	Lingk	25	0.2	Benefit
		ar		5	
		Kepal			
		a			
2	C2	Lebar	20	0.2	Benefit
		Dada		0	
3	C3	Panja	20	0.2	Benefit
		ng		0	
		Badan			
4	C4	Lingk	20	0.2	Benefit
		ar		0	
		Paha			
5	C5	Berat	15	0.2	Benefit
		Badan		0	

Kriteria menjadi bahan pertimbangan PT. Juang Jaya Abadi Alam dalam pemilihan sapi pedaging impor terbaik data baru tentunya harus memiliki bobot yang akan dijadikan acuan penilaian berdasarkan tingkat kepentingannya. Adapun bobot dan penjelasan masing-masing kriteria adalah sebagai berikut:

Tabel 2. Tabel Skala Penilaian

Kode	Nama	Derajat	Range
	Krteria	Keanggotaan	
		1. Cukup	1. 40-55
	Lingkar		cm
C1	Kepala	2. Baik	2.56-70
01			cm
		3.Sangat Baik	3. 71-85
			cm
C2		1. Cukup	1. 100-125
	Lebar		cm
	Dada	2. Baik	2. 126-135
			cm
		3.Sangat Baik	3. 136-160
			cm
C3		1. Cukup	1. 230-245
	Panjang		cm
	Badan	2. Baik	2. 246-259
			cm
		3.Sangat Baik	3. 260-290
			cm
C4		1. Cukup	1. 40-55
	Lingkar		cm

	Paha	2. Baik	2. 56-64
			cm
		3. Sangat	3. 65-80
		Bagus	cm
C5		1. Cukup	1. 50-70
	Berat		kg
	Badan	2. Baik	2. 71-90
			kg
		Sangat	3. 91-120
		Bagus	kg

Menetukan Nilai Maximum Dan Minimum Kriteria Suatu Kriteria yang tidak menguntungkan maka dikatakan dan Kriteria minimum yang menguntungkan disebut maximum. Pada kasus ini kelima kriteria yang digunakan adlah kriteria yang maximum karena semua kriteria yang digunakan sangat berpengaruh pada proses menentukan pemilihan sapi pedaging impor terbaik di PT. Juang Jaya Abadi Alam.

No	Kode	Maximum	Minimum	Yi
		(C1+C2+	(0)	(Max-
		C3+C4+C)		Min)
1	A1	0,3634	0	0,3634
2	A2	0,5064	0	0,5064
3	A3	0,3655	0	0,3655
4	A4	0,5081	0	0,5081
5	A5	0,2761	0	0,2761

Tabel 4 Data Alternatif

No	Kode	Alternatif
1	A1	Sapi
		Limousin
2	A2	Sapi Angus
3	A3	Sapi
		Simental
4	A4	Sapi
		Brahman
5	A5	Sapi
		Australian
		Commercial
		Cross

Data alternatif yang diperoleh diberikan penilain sesuai data kriteria yang berlaku

N o	Alter natif	L.Ke pala	L.D ada	P.Ba dan	L.P aha	B.Ba dan
1	A1	45 cm	105 cm	235 cm	65 cm	98 kg
2	A2	70 cm	140 cm	280 cm	50 cm	85 kg
3	A3	75 cm	125 cm	240 cm	55 cm	90 kg
4	A4	65 cm	120 cm	260 cm	70 cm	92 kg
5	A 5	53 cm	123 cm	240 cm	50 cm	110 kg

Dalam perhitungan menggunakan metode MOORA nilai yang digunakan harus dalam bentuk angka. Oleh Karena itu semua data yang diperoleh diubah kedalam bobot nilai untuk setiap kriteria uang berlaku.

Tabel 6 Data Nilai

N	Kod	C1	C2	C3	C4	C5
0	e					
1	A1	1	1	1	3	3
2	A2	2	3	3	1	2

3	A3	3	1	1	1	2
4	A4	2	1	3	3	3
5	A5	1	1	1	1	3
Opt	imum	Ma	Ma	Ma	Ma	Ma
		X	X	X	X	X

Menghitung Nilai yi

Tabel 7 Data Nilai

June 2021, IV (2): 163 –170

Available online at http://jurnal.goretanpena.com/index.php/JSSR

	asil Nilai AKhir Tabel 8 Perangkingan						
No	Kode	Alternatif	Yi (Max- Min)				
1	A1	Sapi Limousin	0,3634				
2	A2	Sapi Angus	0,5064				
3	A3	Sapi Simental	0,3655				
4	A4	Sapi Brahman	0,5081				
5	A5	Sapi Australian Commercial Cross	0,2761				

Perangkingan Tabel 9 Hasil NIIai Akhir dan Rangking

No	Kode	Alternatif	Yi (Max- Min)	Keterangan Hasil
1	A4	Sapi		Rangking 1
1		Brahman	0,5081	
2	A2	Sapi Angus	0,5064	Rangking 2
3	A3	Sapi		Rangking 3
		Simental	0,3655	0 0
4	A1	Sapi		Rangking 4
1	l	Limousin	0,3634	
5	A5	Sapi	0,2761	Rangking 5
1	l	Australian		
1	l	Commercial		
		Cross		

HASIL DAN PEMBAHASAN

Hasil tampilan antar muka adalah tahapan dimana sistem atau aplikasi siap untuk dioperasikan pada keadaan yang sebenarnya sesuai dari hasil analisis dan perancangan yang dilakukan, sehingga akan diketahui apakah sistem atau aplikasi dibangun yang dapat menghasilkan suatu tujuan yang dicapai, aplikasi Sistem Pendukung Keputusan ini dilengkapi dengan tampilan bertujuan untuk memudahkan yang penggunanya. Fungsi dari interface (antarmuka) ini adalah untuk memberikan input dan menampilkan output dari aplikasi. Pada aplikasi ini memiliki interface yang terdiri dari Menu login, Data Alternatif dan Menu Proses Moora.

Halaman Utama

Dalam halaman utama untuk menampilkan pada tampilan *Menu* pada awal sistem yaitu *Menu* login dan menu utama. Adapuan *Menu* halaman utama sebagai berikut.

1. Menu Login

Sebelum masuk dan mengakses aplikasi, admin harus melakukan *login* terlebih dahulu dengan cara meng*input user name* dan *password* dengan benar sesuai dengan sistem *database* dan akan masuk ke menu

Gambar 1. Form Login

2. Menu Utama

Menu Utama digunakan sebagai penghubung untuk *form* data alternatif, data kriteria, proses penilaian, proses perhitungan dan laporan. Berikut adalah tampilan *Menu Utama:*

Gambar 2. Menu Utama

Halaman Administrator

Dalam administrator untuk menampilkan *Menu* pengolahan data pada penyimpanan data ke dalam *database* yaitu *Form* Data Kriteria, *Form* Data Alternatif, *Form* Penilaian data Kriteria dan Alternatif dan *Form* Laporan. Adapun Menu halaman administrator utama sebagai berikut.

1. Form Data Kriteria

Pada *form* data kriteria admin dapat melakukan pengolahan data kriteria berupa menambah, mengubah, dan menghapus data kriteria yang terdapat pada *database*. Berikut tampilan *form* data kriteria:

Berikut tampilan *form* proses MOORA

Gambar 3. Form Data Kriteria

2. Form Data Alternatif

Pada *form* data alternatif admin dapat melakukan pengolahan data alternatif berupa menambah, mengubah, dan menghapus data alternatif yang terdapat pada *database*. Berikut tampilan *form* data alternatif:

Gambar 4 Form Data Alternatif

3. Form Proses Penilaian

Pada *form* penilaian admin dapat melakukan pengolahan penilaian berupa menambah, mengubah, dan menghapus penilaian yang terdapat pada *database*. Berikut tampilan *form* penilaian:

Gambar 5 Form Data Penilaian

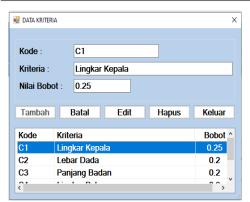
4. Form Proses MOORA

Pada *form* proses MOORA merupakan *form* yang digunakan untuk melakukan perhitungan akhir untuk mendapatkan hasil keputusan.

Gambar 6 Form Proses MOORA

5. Form Laporan

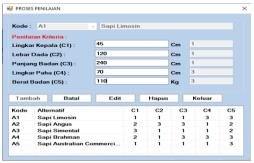
Pada *form* laporan berisi hasil keputusan penilaian untuk pemilihan sapi pedaging impor terbaik. Berikut tampilan form laporan:

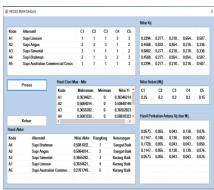


Kode	Alternatif	Nilai Akhir	Rangking	Keterangan
A4	Sapi Brahman	0,51	1	Sangat Baik
A2	Sapi Angus	0,51	2	Sangat Baik
A3	Sapi Simental	0,37	3	Kurang Baik
A1	Sapi Limosin	0,36	4	Kurang Baik
A5	Sapi Australian Commercial Cross	0,28	5	Kurang Baik

Gambar 7 Form Laporan

Pengujian


Pada bagian ini anda diminta untuk melakukan pengujian dengan sampling data baru dan pada bagian ini anda diminta untuk dapat menguji keakuratan sistem yang anda rancang dengan *toolstools* yang sudah teruji dan terkalibrasi sebelumnya. Adapun hasil proses program dalam penjualan bahan pokok sebagai berikut.


Gambar 8. Form Data Kriteria

Gambar 9 Form Data Alternatif

Gambar 10 Form Prose Penilaian

Gambar 11 Form Proses MOORA

SIMPULAN

Berdasarkan hasil analisa dari permasalahan yang terjadi dengan kasus yang di bahas tentang pemilihan sapi pedaging impor terbaik terhadap sistem yang dirancang dan dibangun maka dapat ditarik kesimpulan sebagai berikut:

- 1. Dengan menggunakan Sistem Pendukung Keputusan untuk pemilihan sapi pedaging impor terbaik dapat dilakukan dengan cepat dan tepat.
- 2. Dengan menrapkan metode yang dimana metode MOORA untuk pemilihan sapi pedaging impor terbaik ini dapat melakukan proses pemilihan sapi pedaging impor terbaik yang akan menghasilkan perangkingan yang akan diterima oleh PT. Juang Jaya Abadi Alam.
- 3. Dalam meramcang dan membangun aplikasi Sistem Pendukung Keputusan menggunakn metode MOORA pada PT.Juang Jaya Abadi Alam maka didapatlah aplikasi yang mampu mempermudah dan mempercepat dalam menentukan pemilihan sapi pedaging impor terbaik.

DAFTAR PUSTAKA

Afrisawati, A., & Irianto, I. (2019).

Pemilihan Bibit Ternak Sapi Potong
Melalui Kombinasi Metode Ahp
Dan Metode Mfep. *JURTEKSI*(*Jurnal Teknologi dan Sistem Informasi*), 6(1), 43–50.
https://doi.org/10.33330/jurteksi.v6i
1.392

Amijaya, A., Ferdinandus, F., & Bayu, M. (2019). Sistem Pendukung Keputusan Pemilihan Handphone Dengan Metode Simple Additive Weighting Berbasis WEB. *CAHAYAtech*, 8(2), 102. https://doi.org/10.47047/ct.v8i2.47

Erwansyah, K. (2019). Sistem Pendukung Keputusan Menentukan Mitra Kerja June 2021, IV (2): 163 –170

Available online at http://jurnal.goretanpena.com/index.php/JSSR

Entri Data Baru Pada Badan Pusat Statistik Kota Medan Menggunakan Metode MOORA (Multi Objective Optimization On The Basis Of Ratio Analysis). 18(1).

Rizanti, N. P., Sianturi, L. T., & Sianturi, M. (2019). Sistem Pendukung Keputusan Pemilihan Siswa Pertukaran Pelajar Menggunakan Metode PSI (Preference Selection Index). Seminar Nasional Teknologi Komputer dan Sains (SAINTEKS), 263–269.

Sriani, & Putri, R. A. (2018). Analisa Sistem Pendukung Keputusan Mengunakan Metode TOPSIS Untuk Sistem Penerimaan Pegawai Pada SMA Al Washliyah Tanjung Morawa. *Jurnal Ilmu Komputer dan Informatika*, 02(April), 40–46.