STRATEGI PERSONALISASI PRODUK UMKM KULINER TRADISIONAL DI YOGYAKARTA DENGAN METODE RFM DAN K-MEANS CLUSTERING
Abstract
Abstract: Traditional culinary Micro, Small, and Medium Enterprises (MSMEs) face significant challenges in retaining customers amidst digital competition. This study aims to formulate an effective product personalization strategy for MSMEs by utilizing customer transaction data. We applied the RFM (Recency, Frequency, Monetary) model combined with the K-Means Clustering algorithm to transaction data from 200 culinary MSME customers in Yogyakarta. The analysis results show that customers can be grouped into four homogeneous segments: VIP Customers, Loyal Customers, Potential Customers, and Risky Customers. Based on the unique characteristics of each segment, relevant marketing strategies are formulated, such as exclusive loyalty programs for VIP Customers and reactivation campaigns for Risky Customers. This study contributes by providing a practical, data-driven methodology for MSMEs to improve their retention and marketing effectiveness, filling the existing research gap in the traditional culinary MSME sector.
Keyword: RFM (Recency Frequency, Monetary),K-Means Clustering, VIP
Abstrak: Usaha Mikro, Kecil, dan Menengah (UMKM) kuliner tradisional menghadapi tantangan besar dalam mempertahankan pelanggan di tengah persaingan digital. Penelitian ini bertujuan untuk merumuskan strategi personalisasi produk yang efektif bagi UMKM dengan memanfaatkan data transaksi pelanggan. Kami menerapkan model RFM (Recency, Frequency, Monetary) yang dikombinasikan dengan algoritma K-Means Clustering pada data transaksi dari 200 pelanggan UMKM kuliner di Yogyakarta. Hasil analisis menunjukkan bahwa pelanggan dapat dikelompokkan menjadi empat segmen homogen: Pelanggan VIP, Pelanggan Setia, Pelanggan Potensial, dan Pelanggan Berisiko. Berdasarkan karakteristik unik setiap segmen, dirumuskan strategi pemasaran yang relevan, seperti program loyalitas eksklusif untuk Pelanggan VIP dan kampanye reaktivasi untuk Pelanggan Berisiko. Penelitian ini berkontribusi dengan menyediakan metodologi praktis berbasis data bagi UMKM untuk meningkatkan retensi dan efektivitas pemasaran mereka, mengisi kesenjangan penelitian yang ada pada sektor UMKM kuliner tradisional.
Full Text:
PDFReferences
Abbas, Q. (2024). The Impact of Personalization Strategies on Consumer Engagement and Conversion Rates in Digital Marketing. Int. j. Adv. Multidisc. Res. Stud, 4(1), 452–454. www.multiresearchjournal.com
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics (Switzerland), 9(8), 1–12. https://doi.org/10.3390/electronics9081295
Alamsyah, A., Prasetyo, P. E., Sunyoto, S., Bintari, S. H., Saputro, D. D., Rohman, S., & Pratama, R. N. (2022). Customer Segmentation Using the Integration of the Recency Frequency Monetary Model and the K-Means Cluster Algorithm. Scientific Journal of Informatics, 9(2), 189–196. https://doi.org/10.15294/sji.v9i2.39437
Asmarawati, B. (2025). From Manual To Digital: The Evolution Of SME Accounting In The Technological Era Dari Manual Ke Digital: Evolusi Akuntansi UMKM Di Era Teknologi. Management Studies and Entrepreneurship Journal, 6(3), 3205–3214. http://journal.yrpipku.com/index.php/msej
Fitriyani, R., Ayip Luthfi Firmansyah, Al Yaafi Nadiyal Fithri, & Larasati Angelica Nurfadillah. (2024). Penerapan Algoritma Clustering untuk Segmentasi Pelanggan E-commerce berdasarkan Data Pembelian dan Aktivitas. Seminar Teknologi Majalengka (Stima), 8, 372–379. https://doi.org/10.31949/stima.v8i0.1129
Hendrawan, S. A., Afdhal Chatra, Nurul Iman, Soemarno Hidayatullah, & Degdo Suprayitno. (2024). Digital Transformation in MSMEs: Challenges and Opportunities in Technology Management. Jurnal Informasi Dan Teknologi, 6, 141–149. https://doi.org/10.60083/jidt.v6i2.551
John, J. M., Shobayo, O., & Ogunleye, B. (2023). An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market. Analytics, 2(4), 809–823. https://doi.org/10.3390/analytics2040042
Nurcholis, A. W., Noptrina, N., & Wibisono, D. (2023). Pengembangan Umkm Melalui Digitalisasi Sebagai Media Promosi. JMM (Jurnal Masyarakat Mandiri), 7(6), 5912. https://doi.org/10.31764/jmm.v7i6.19352
Sembiring Brahmana, R. W., Mohammed, F. A., & Chairuang, K. (2020). Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 11(1), 32. https://doi.org/10.24843/lkjiti.2020.v11.i01.p04
Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. Eurasip Journal on Wireless Communications and Networking, 2021(1). https://doi.org/10.1186/s13638-021-01910-w
Suhaili, M. (2019). Economics Development Analysis Journal Role of MSME in Absorbing Labor and Contribution to GDP Article Information. Economics Development Analysis Journal, 8(3), 301–315. http://journal.unnes.ac.id/sju/index.php/edaj
Tarigan, C. A. B., Sembiring, H. B., Yulinda, R., Bako, S. M., & Arsyandona. (2025). Peran Inovasi Operasional Berbasis Digital dalam Meningkatkan Daya Saing UMKM. Jurnal Bisnis, Ekonomi Syariah, Dan Pajak, 2(2), 187–195.
Wahyuni, S., Wulansari, T. T., & Fahrullah, F. (2023). Segmentasi Pelanggan Berdasarkan Analisis Recency, Frequency, Monetary Menggunakan Algoritma K-Means Pada CV. Toedjoe Sinar Group. Jurnal Rekayasa Teknologi Informasi (JURTI), 7(2), 180. https://doi.org/10.30872/jurti.v7i2.8748
Weidig, J., Weippert, M., & Kuehnl, C. (2024). Personalized touchpoints and customer experience: A conceptual synthesis. Journal of Business Research, 177(January), 114641. https://doi.org/10.1016/j.jbusres.2024.114641
Yunita, I., Ali, P. R., Kartawidjaja, M. A., & Sukwadi, R. (2025). Segmentasi Pelanggan Menggunakan K-Means Clustering: Menganalisis Metrik RFM untuk Strategi Pemasaran. Jurnal Media Teknik Dan Sistem Industri, 9(1), 58. https://doi.org/10.35194/jmtsi.v9i1.4452
Zahro, N., Maori, N. A., & Wibowo, G. W. N. (2025). Journal of Dinda. 5(1), 12–21.
DOI: https://doi.org/10.54314/jssr.v8i3.4324
Article Metrics
Abstract view : 51 timesPDF - 15 times
Copyright (c) 2025 Sur Liyan, Dwi Hery Yulianto, Agung Yuliyanto Nugroho


