Performance Analysis Of Regression Model In Machine Learning To Prediction Rice Prices

Muhammad Ardiansyah Sembiring, Diana Lestari, Maysaroh Rambe

Abstract


Abstract: The trade sector has become increasingly unpredictable, often experiencing drastic fluctuations in commodity prices, especially essential goods like rice. Rice plays a crucial role in people’s livelihoods, and rising prices can significantly reduce purchasing power for other necessities. This study aims to predict wholesale rice prices using independent variables such as Dry Paddy Price, Paddy Field Area, Fuel Price, Perton Production, and Cooking Oil Price. Seven regression estimation methods were applied: (1) Linear Regression, (2) Support Vector Regression Linear, (3) Support Vector Regression RBF, (4) Decision Tree Regression, (5) Random Forest Regressor, (6) Gradient Boosting Regression, and (7) MLP Regressor. The objective is to determine the method with the best accuracy for deployment in rice price prediction. The results show that Decision Tree Regression outperformed other methods, achieving the highest accuracy of 90% at a 90:10 data ratio, 80% at 80:20, 70% at 70:30, and 60% at 60:40. It also produced the lowest error values (MSE = 0.00000000, RMSE = 0.00000000) and the highest R² score (1.00000000), confirming its superior predictive performance for estimating rice prices.

Keywords: decision tree regression; machine learning; price estimation; rice price prediction.

 

 

Abstrak: Sektor perdagangan saat ini semakin tidak stabil, sering mengalami fluktuasi harga komoditas yang signifikan, terutama pada kebutuhan pokok seperti beras. Beras menjadi faktor penting dalam kehidupan masyarakat karena kenaikan harganya dapat menurunkan daya beli terhadap kebutuhan lain. Penelitian ini bertujuan memprediksi harga beras grosir dengan variabel independen yaitu Harga Gabah Kering, Luas Lahan Sawah, Harga Bahan Bakar, Produksi Perton, dan Harga Minyak Goreng. Tujuh metode regresi digunakan: (1) Linear Regression, (2) Support Vector Regression Linear, (3) Support Vector Regression RBF, (4) Decision Tree Regression, (5) Random Forest Regressor, (6) Gradient Boosting Regression, dan (7) MLP Regressor. Tujuannya adalah menentukan metode dengan akurasi terbaik untuk diterapkan dalam prediksi harga beras. Hasil menunjukkan bahwa Decision Tree Regression merupakan metode terbaik dengan akurasi tertinggi 90% pada rasio data 90:10, 80% pada 80:20, 70% pada 70:30, dan 60% pada 60:40. Metode ini menghasilkan nilai error terendah (MSE = 0.00000000, RMSE = 0.00000000) serta nilai R² tertinggi (1.00000000), menunjukkan kinerja prediksi terbaik dalam estimasi harga beras.

Kata Kunci: decision tree regression; estimasi harga; pembelajaran mesin; prediksi harga beras.


Full Text:

PDF

References


V. Tulus Pangapoi Sidabutar, Study of electric vehicle development in Indonesia: prospects and obstacles, J. Paradig. Ekon., vol. 15, no. 1, pp. 2138, 2020, doi: 10.22437/paradigm a.v15i1.9217.

T. Abdullah and R. Boedisantoso, Calculation of Green Open Space Based on Carbon Dioxide Emissions, J. Pijar Mipa, vol. 14, no. 1, pp. 9599, 2019, doi: 10.29303/jpm.v14i1.997.

E. Alfisyahri, N., Karimi, S. and Ridwan, Causal Relationship between Hydropower Energy Consumption, Carbon Dioxide Emissions and Economic Growth in G20 Countries, J. Ilm. MEA (Management, Econ. Accounting), vol. 4, no. 1, pp. 114127, 2020.

FD Permatasari, S. Hadisusanto, and E. Haryono, CO2 Emissions of Motor Vehicles During the Large-Scale Social Restriction Policy Period (Case Study: Road Sections in Central Jakarta), Ecolab, vol. 15, no. 1, pp. 3144, 2021, doi: 10.20886/jklh.2021.15.1.31-44.

Central Statistics Agency. https://www.bps.go.id/indicator/17/57/1/jumlah-kendaraan-motor.html (accessed May 19, 2022).

Bappeda of the Special Region of Yogyakarta. http://bappeda.jogjaprov.go.id/artikel/detail/46-a-pollusi-udara-dan-uji-emisi-gas-buang-kendaraan-b ermotor-sebagai-prasyarat-pemberian-perpanjgn-stnk (accessed May 19, 2022).

Carbon Emissions from Indonesian Forest Fires Reach 41.4 Million Tons in 2021 | Databoks. https://databoks.katadata.co.id/datapublish/2022/01/11/emisi-karbon-dari-kebakaran-hutan-i ndonesia-capai-414-juta-ton-pada-2021 (accessed May 21, 2022).

Transportation Contributes 27% of Energy Sector Emissions | Databoks. https://databoks.katadata.co.id/datapublish/2021/03/03/transportasi-sumbang-sepertiga-emisi-sektor-energi (accessed May 21, 2022).

A. Kurnia and Sudarti, Greenhouse Effect, J. Educator. Phys. and Science, vol. 4, no. 2, pp. 19, 2021.

B. Leu, The Impact of Global Warming and Efforts to Control It Through Environmental Education and Islamic Education, At-Tadbir, vol. 1, no. 2, pp. 115 , 2021, doi: 10.51700/attadbir.v1i2.207.




DOI: https://doi.org/10.54314/teknisi.v4i2.4494

Article Metrics

Abstract view : 20 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.