INTEGRASI DATA MINING DAN BUSINESS INTELLIGENCE MONITORING PIUTANG PBB-P2 BPKPD KOTA TEBING TINGGI

Sugeng Pranoto, Sri Wahyuni

Abstract


Abstract: The biggest challenge in managing the Rural and Urban Land and Building Tax (PBB-P2) lies in the large amount of taxpayer data that must be managed and analyzed as the basis for making accurate policies and decisions. Data mining and Business Intelligence (BI) provide a strong foundation for organizations to manage and analyze data effectively in support of decision-making. The integration of Data Mining in clustering taxpayer compliance levels using the K-Means algorithm and Business Intelligence (BI) through Apache Superset for monitoring the realization of PBB-P2 receivables can be implemented using the Research & Development (R&D) method. The stages of this method include problem identification, literature study, data collection, system integration design and implementation, system integration evaluation, analysis of integration results, and the final stage consisting of conclusions and recommendations from the research. The research results show that the K-Means Clustering algorithm in Data Mining is effective in clustering taxpayers based on their compliance level in paying the PBB-P2. Furthermore, the integration of Data Mining applications based on Java and Business Intelligence (BI) using Apache Superset can optimize the monitoring of PBB-P2 receivables realization in BPKPD Tebing Tinggi.

 

Keywords: Data Mining, Business Intelligence, K-Means, Java, Apache Superset,

                PBB-P2

Abstrak: Tantangan terbesar dalam pengelolaan Pajak Bumi dan Bangunan Perdesaan dan Perkotaan (PBB-P2) terletak pada besarnya jumlah data wajib pajak yang dikelola dan akan dianalisa sebagai dasar pengambilan kebijakan dan keputusan yang tepat. Data maining dan Business Intelligence (BI) memberikan landasan yang kuat bagi organisasi dalam mengelola dan menganalisis data secara efektif untuk mendukung pengambilan keputusan. Penerapan integrasi Data Mining dalam pengelompokan tingkat kepatuhan wajib pajak dengan menggunakan algoritma K-Means dan Business Intelligence (BI) dengan menggunakan apache superset pada monitoring realisasi piutang Pajak Bumi dan Bangunan Perdesaan dan Perkotaan (PBB-P2) dapat dilakukan dengan menggunakan metode Research & Development (R&D). Tahapan metode tersebut meliputi identifikasi masalah, studi literatur, pengumpulan data, peracangan dan implementasi sistem integrasi, evaluasi sistem integrasi, analisa hasil integrasi dan tahapan akhir adalah kesimpulan dan rekomendasi dari penelitian. Hasil dari penelitian menunjukan algoritma K-Means Clustering dalam Data Mining efektif untuk mengelompokkan wajib pajak berdasarkan tingkat kepatuhan pembayaran Pajak PBB-P2 dan dengan integrasi aplikasi Data Mining berbasis Java dan Business Intelligence (BI) menggunakan Apache Superset dapat mengoptimalkan monitoring realisasi piutang PBB-P2 di BPKPD Tebing Tinggi.

 

Kata kunci: Promosi, Brosur, Multimedia Development Life Cycle, Augmented Reality

Full Text:

PDF

References


Cantika, R., Fauzi, A., & Sihombing, A. (2024). Penerapan Metode Clustering Untuk Mengetahui Kepatuhan Wajib Pajak Bumi dan Bangunan Pada Desa Perkebunan Tanjung Keliling. BRIDGE : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(4), 169–178. https://doi.org/https://doi.org/10.62951/bridge.v2i4.242

Fatha, M. K., Wati, S. F. A., Dewa, B. S., & Prasetyo, K. E. (2023). Peran Big Data Pada Intelijen Bisnis Sebagai Sistem Pendukung Keputusan (Systematic Literature Review). Prosiding Seminar Nasional Teknologi Dan Sistem Informasi, 3(1), 318–326. https://doi.org/https://doi.org/10.33005/sitasi.v3i1.612

Fauzi, A., Nugroho, A. A., Monte, A. K., Ignesia, A. A., Makruf, M. N., Andreas, R., & Hasanah, S. R. N. (2023). Pemanfaatan Business Intelligence Dalam Pembuatan Strategi dan Pengambilan Keputusan Bisnis. Jurnal Manajemen Dan Bisnis, 2(3), 212–218. https://jurnalprisanicendekia.com/index.php/portofolio/article/view/172

Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), 3(1), 46–56. https://doi.org/https://doi.org/10.58602/jima-ilkom.v3i1.26

Iqbal, M., Sipayung, S. P., Sinaga, A. R., & Hasugian, P. M. (2024). Analysis of Student Achievement with K-Means on Socioeconomic , Behavioral , and Psychological Factors. Jurnal Info Sains : Informatika Dan Sains, 14(04), 715–728. https://doi.org/10.54209/infosains.v14i04

Maesaroh, S., Lubis, R. R., Husna, L. N., Widyaningsih, R., Susilawati, R., Yasmin, P., & Maulia. (2022). Efektivitas Implementasi Manajemen Business Intelligence pada Industri 4.0. ADI Bisnis Digital Interdisiplin Jurnal, 3(2), 69–75. https://doi.org/https://doi.org/10.34306/abdi.v3i2.764

Mardini, J. (2024). Pengelompokan Data PBB Masyarakat Berdasarkan Jumlah PBB Terhutang Pada Kantor Desa Padang Brahrang Menggunakan Metode Clustering. Journal of Mathematics and Technology (MATECH), 3(1), 54–61. https://journal.binainternusa.org/index.php/matech/article/view/167

Pranoto, S., & Nasution, D. (2024). Business Intelligence Menggunakan Apache Superset untuk Sistem Pendukung Keputusan Kebijakan Penagihan Pajak Bumi dan Bangunan : Studi Kasus BPKPD Kota Tebing Tinggi. Indonesian Journal of Education And Computer Science, 2(3), 154–160. https://doi.org/https://doi.org/10.60076/indotech.v2i3.922

Putra, P. H., Syahputra, Z., & Novelan, M. S. (2021). Application Of The K-Means Algorithm In Identifying. Jurnal Infokum, 9(2), 281–286. https://infor.seaninstitute.org/index.php/infokum/article/view/124

Ramadhan, H. F., Fauzi, A., Rupelu, C. N., Aprillia, D. P., Anjani, N. D., & Halimatusadiah. (2022). Pengaruh Business Intelligence Terhadap Perusahaan Dalam Pengambilan Keputusan : Business Intelligence , Arsitektur Bi Dan Data Warehouse (Kajian Studi Business Intelligence).

JEMSI (Jurnal Ekonomi Manajemen Sistem Informasi), 3(6), 639–644. https://doi.org/https://doi.org/10.31933/jemsi.v3i6.1105

Sabherwal, R., & Fernandez, I. B. (2015). Business Intelligence: Practices, Technologies, and Management (1st Edition). John Wiley & Sons.

Sari, R. M., Wahyuni, S., & Rizka, A. (2023). Implementasi Algoritma K-Means Untuk Guru Berprestasi. Jurnal Minfo Polgan, 12(2), 531–538. https://doi.org/https://doi.org/10.33395/jmp.v12i2.12453

Shekhar, S. (2018). Apache Superset Quick Start Guide (1st Edition). Packt Publishing.

Siahaan, A. P., Utama, Irsyad, M., Marsya, A., & Triyadi, M. D. (2024). Application Of Business Intelligence in Decision Support in Providing Assistance to Business Actors in Deli Serdang Regency Using The Decision Tree Algoritm. Journal of Information Technology, Computer Science and Electrical Engineering (JITCSE), 1(3), 210–214. https://doi.org/10.30596/jitcse

Wahyuni, S., Nasution, A. D., & Hermansyah. (2023). Optimization Of Data Mining In Predicting Tourist Visits At The Deli Serdang Museum. International Conference on Sciences Development and Technology, 3(1), 115–120. https://jurnal.uinsu.ac.id/index.php/icosdtech/article/view/18696

Wahyuni, S., Zarlis, M., Solikhun, Jollyta, D., Safii, M., & Sulistianingsih, I. (2019). Implementation of MD Heuristic Method for Classifying Numerical Data in Data Preprocessing. Journal of Physics: Conference Series, 1255. https://doi.org/10.1088/1742-6596/1255/1/012060




DOI: https://doi.org/10.54314/jssr.v8i2.2571

Article Metrics

Abstract view : 0 times
PDF - 0 times

Copyright (c) 2025 JOURNAL OF SCIENCE AND SOCIAL RESEARCH